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Radiation pattern of a classical dipole in a photonic crystal: Photon focusing
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An asymptotic analysis of the radiation pattern of a classical dipole in a photonic crystal possessing an
incomplete photonic bandgap is presented. The far-field radiation pattern demonstrates a strong modification
with respect to the dipole radiation pattern in vacuum. Radiated power is suppressed in the direction of the
spatial stop band and strongly enhanced in the direction of the group velocity, which is stationary with respect
to a small variation of the wave vector. An effect of radiated power enhancement is explained in terms of
photon focusingA numerical example is given for a square-lattice two-dimensional photonic crystal. Predic-
tions of asymptotic analysis are substantiated with finite-difference time-domain calculations, revealing a
reasonable agreement.
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[. INTRODUCTION For example, it was demonstrated that the external quantum
, . efficiency of light-emitting diodes can be significantly im-
Purcell[1] was the first who pointed out that the sponta- y g 9 g y

neous emission of an atom or a molecule depends on i%roved by introducing a two-dimension&2D) photonic
environment. Since then, the influence of nontrivial bound- rystal [18,19. Another example is a highly directive light

ary conditions in the vicinity of an excited atom on its emis- source employing a 3D photonic crysfan,21.

. . . . An intrinsic property of photonic crystals is their compli-
sive properties has been the subject of active resqarel) gﬁted photonic band structure, which can be engineered by

Lmngoir;i?;iﬁéﬁrgrf)lfﬁemssl:)%r;a?]r]egggjznniiessaigenag egh?gsgrr]gi 0osing an appropriate combination of materials and lattice
P y eometry{13,14. Being able to modify in purpose the emis-

environmenf1] —e.g., microcavity. These phenomena were?. L o .

first demonstrated by Gast al. [5] and Kleppnef6], respec- sion rat¢.W|th|n a specific spectral range gnd SImu!ta}neogsly
. ) . ) in specific directions could add a significant flexibility in
tively, and continue to be the subject of intense research not

only due to their contribution to the better understanding of 1Proving light sources.

. . . A number of papers were devoted to the study of the
the I|ght matter interaction, but FO a gre"’!t extent., d_ue o th(';é,pontaneous emission in photonic crystfl$—17,22—-3p
practical importance of controlling the light emission pro-

cess. Light-emitiing diode§7-9) and thresholdless lasers But to the author’s knowledge, questions like the modifica-

[10-17 are just a few examples, where the light extractiontlon of the emission rate in a specific direction and modifi-

and the spontaneous emission control by means of optic c|ation of the emission pattern due to the photonic crystal
. >P X y PUCR vironment have not been yet addressed. Special opportu-
microcavity lead to improved performance.

The dielectric periodic medium. also called photonic cr S_nities in controlling the directionality of emission exist
; P ’ L P YS“within the spectral ranges of allowed photonic bands, where
tal [13,14, is a good example of nontrivial boundary condi-

; e : hotonic crystals display strong dispersion and anisotropy.

mjendsiucr)r? (?:neligtsrg;nsagnceglrz f;glg. Shl(J)(t:Qninblgrf:gmgge_niegL%he consequence of anisotropy is the beam-steering effect
. P 1plete photo gap—i. "1[33,341, which in essence means that the group velocity di-

continuous spectral range within which linear propagation o

light is prohibited in all spatial directions. One of the conse—recuon of the medium’s eigenmode does not necessarily co-

) S L incide with its wave vector direction. A beam-steering effect
quences is an inhibited spontaneous emission for the atom|

o o X I known to be the reason for a number of anomalies in an
transition frequency inside the complete photonic band ga lectromagnetic beam propagation inside a photonic crystal
[15-17. There are no electromagnetic modes avaliable tg g propag P ysid,

carry the enerav away from the atom at complete hotoni(\:NhiCh are usually referred to as superprism or ultrarefractive
y gy y P P henomend33-39. For example, an extraordinary large or

bﬁnd gapbfreguencies. Alllthough the ;xilstence of a colmpleh egative beam bendings], beam self-collimatior36,37
photonic band gap usually requires dielectric materials wit . ' e
relatively high refractive indexn>2) arranged in a three- and photon focusingB8,39 were reported. The last phenom

) . . . enon is similar to phonon focusing, a phenomenon observed
dimensional (3D) lattice [13,14, photonic crystals are P g.ap

d 1o b ful artificial il difv the liah in the ballistic transport of phonons in crystalline soljd§].
proved to be useful artificial materials to modify the light " e term “phonon focusing” refers to the strong aniso-

emission even in the absence of complete photonic band gagy, ., of heat flux in crystalline solids. First observed in 1969
by Taylor et al. [41], phonon focusing is a property of all
crystals at low temperatures. The term “focusing” does not

*Present address: Physikalisches Institut, Universitat Bonnimply a bending of particle paths, as in the geometrical-

Nussallee 12, 53115 Bonn, Germany. optics sense of the term. The physical reason for the phonon

Electronic address: chigrin@th.physik.uni-bonn.de focusing is the beam steering. In particular, waves with quite

1539-3755/2004/16)/05661112)/$22.50 70 056611-1 ©2004 The American Physical Society



DMITRY N. CHIGRIN PHYSICAL REVIEW E 70, 056611(2004

different wave vectors can have nearly the same group ve- V .-H=0. (4)
locity, so the energy flux associated with those waves
bunches along certain crystalline directions. In some specidilere, the electricmagnetig field is denoted by (H), andc
cases, a heat flux can display intricate focusing causticds @ speed of light in vacuum. An electromagnetic field is
along which flux tends to infinitf40]. This happens when produced by a current sourceand the charge density is
the direction of the group velocity is stationary with respectzero, p=0. Then one can choose the transveiGeulomb
to a small variation of the wave vector. gauge for the vector potenti@l in the form[43]

One can expect that a similar phenomenon takes place in
photonic crystalg38,39. An optical cousin of the acoustic V- [e()A]=0. (5)

phenomenon opens a unique opportunity to design a caustigfe apsence of the charge density implies that the scalar
pattern on purpose, enhancing and suppressing emission iytential ¢ is zero. The electric and magnetic fields can be

specific directions. o o written in terms of the vector potentiél via
In this paper a description of the angular distribution of
the radiated power of a classical dipole embedded in a pho- 10A
tonic crystal is presented. It is assumed that only propagating =" coat’ (6)

modes of the photonic crystal contribute to the far-field ra-

diation. The emission process is treated using an entirely

classical model, similar to the one [22,24. Then in the H=V XA. (7)
steady-state limit the spontaneous emission Faie related Combining Egs.(6) and (7) with Maxwell's equations

to the classical radiated powB(r ) =(w/2)Im[d" -E(r)] via . . .
. . . 14 h for th I
T'=P/%w [42], whered is a real dipole momenE(r) is a (A)—( ) one obtains the wave equation for the vector potentia

field in the system, and, is the dipole location.

The general expressions for the field and emission rate of 1 PA A
the point dipole radiating in an arbitrary periodic medium are VXV XA+ gS(F)W e (8)
reviewed in Sec. Il. The evaluation of the asymptotic form of
the radiated field is given in Sec. lll. In Sec. IV, the angular|n what follows, a simplest form of the current densitys

distribution of the radiated power is introduced. A modifica- taken,

tion of the radiation pattern is discussed in terms of photon _

focusing in Sec. V. A numerical example of an angular dis- J(r,t) = —iwedd(r —rg)e o, (9
tribution of emission power radiated from the point isotropic ) o ) )

light source is presented in Sec. VI for the case of a twoJfor a harmonically oscillating dipole with a frequeney and

dimensional square lattice photonic crystal of dielectric rods? réal dipole momend, located at the position, inside a
in air. Summary is given in Sec. VII. photonic crystal, switched on & 0. . .
The field of an arbitrary light source embedded in a peri-

odic medium can be constructed by a suitable superposition
Il. NORMAL-MODE EXPANSION OF DIPOLE FIELD of the medium’s eigenwavegg.g.,[44]):

In this paper, a general linear, nonmagnetic, dielectric me-
dium with arbitrary 3D periodic dielectric functiom(r) Alrh=2 %K Cric (DA (). (10
=¢g(r+R) is studied. HerdR is a vector of the direct Bravais n Bz
lattice, R=2; lia, |; is an integer, andy is a basis vector of Here A, (r) and C,(t) are the Bloch eigenvectgnormal
the periodic lattice. It is assumed that a medium is infinitelymodeg and the time-dependent amplitude coefficient of the
extended in space and that no absorption happens. To tregyenwave(n, k), respectively. The form of the amplitude
the emission process the mode radiation thed} is used  cqefficient is defined by the particular nature of the light
in the framework of the classical electrodynanitd,22,24.  goyrce. The integration is performed over the first Brillouin
In this section, the main results reported[B2,24 are re-  ;4ne (BZ) of the crystal and the summation is carried out

viewed. ) ) ) ) . over different photonic bands, whemnds the band index and
In Gaussian units, Maxwell's equations in such a mediuny s the wave vector.
have the form EigenwavesA, (r) satisfy the homogeneous wave equa-
tion
10H
VXE=-——, (1) w2
c at VXV XAy~ ?s(r)Ank:O (11)
1 JE 4w and also fulfill the orthogonalization, normalization, and clo-
VXH= ES(F)E + ?J. (2 sure conditions given by

d3 An A*r ' :V(Snnr(Sk—k, , 12
v -[s(r)E] =0, 3 fv e A A (1) k=k", (12
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. To define the radiation reaction field, let us consider an
f kA (DAL =T, 8 =r'), (13)  excited molecule or atom at a positiogin a photonic crys-
tal. Assuming that the presence of the molecule does not
where w, is the Bloch eigenfrequency is the volume change the band structure of the crystal, the only possible
of the unit cell of the crystal, * denotes the complex conju-mode it can emit in is an eigenmode of the photonic crystal.
gate, andIgL is the identity operator on the subset of the Then, the radiation reaction field can be chosen in the form
e-transverse vector functions as defined43]. The Bloch  of the normal mode expansiqi5), which is valid for any
eigenvector A, (r) obeys the gauge condition pointr in the crystal, which is distinct frontbut as close as
V-[e(r)A(r)]=0 and is therefore transverse with respect torequired t9 the dipole locatiorr,. Then the radiated power
this gauge. Equationd2) and(13) ensure that the eigenvec- (emission ratg(17) of the classical dipole in a photonic crys-
tors A (r) form a complete set of orthonormaitransverse tal is given by[22,24
functions. Here any vector that satisfies thdransverse 3 A (o) -d[2
gauge conditior(5) is called ‘c-transverse22]. oz f AL
The amplitude coefficient€,(t) can be easily obtained
from the wave equatio). Then, the electromagnetic field
at the point radiated by the point dipole locatedratcan be
represented in terms of Bloch modes as

, 18
|Vnk| ( )

where V.=V, w0, the group velocity of the eigenwave
(n,k) is introduced.
Formula(18) gives the total time-averaged radiated power

47TCwO . [a,(ro) -d] of the dipole situated inside a photonic crystal in the instan-
A(r,t)= E d knﬁ taneous backaction regime. It reflects the possible emission
(wn = wp) rate modification due to photonic crystal environment in the

X A (r)e"‘ n(r-rogiogt (14) steady-state limit, while keeping emission dynamics modifi-

cation out of the consideration. The internal dynamics of the

where the Bloch theorem , (r) =ay (r)e*n" has been used. emitter(emission, absorption, reemission, reabsorption) etc.
The integrand in Eq(14) has a pole at? =3, and the s completely lost within this approximation by the specific

integral is singular. This is a typical behavior for any reso-choice of the test dipol€9) (the radiation reaction fiejd
nance system, where dissipation is neglected. The standafthis approximation corresponds to the Weisskopf-Wigner
Way to regularize the integral is to add a small imaginary parapproximation in the quantum theory of the spontaneous
to wo The result of the integration then becomes dependerdmission of a two-level atom in an inhomogeneous medium
on the sign of this imaginary part. The criterion for determin-[30,43. Although the chosen approximation gives the correct
ing the sign will be discussed below. A regularized integralresult for emission rate modification in most of the situations

(14) reads considered in the presented paper, special care should be
taken for frequencies near the photonic band edges or other
Ar )= - 4wcwozf a3k, M van Hove singularities, where the instantaneous backaction
wo— i) approximation is broken due to a significant modification of
emission dynamic§17,30.
X ag(r)gntrogion, (15 ynamicgl7.39

, , . ll. ASYMPTOTIC FORM OF DIPOLE FIELD
When a light source is situated in an inhomogeneous me-

dium, it is immersed in its own electric field emitted at an  In this section, a radiating dipole field is analyzed in the
earlier time and reflected from inhomogeneities in the meradiation zone. For that, an asymptotic form of the integral
dium (radiation reaction field By conservation of energy, (15) is evaluated and analyzed. In what follows, an
the decay rate at which energy is radiated is equal to the rasymptotic analysis of the Green’s function developed by
at which the charge distribution of the source does work orMaradudin[48] for the phonon scattering problem is used.
the surrounding electromagnetic field. For an arbitrary cur- Using the integral representation

rent densityJ, the radiated power is given Gy5]

1. :—.1 f dre Xm0, (19
P(t) :—J d*ra(r,t) - E(r.b), (16) x>y o

v one can rewrite Eq15) as
whereV is a volume containing a current density soudce

and it is related to spontaneous emission ratel\gP /% wq A(r) = ME f d*k,
[42]. Then, the time-averaged radiated power of the point
dipole (9) is given by o .

x f drlag(ro) - dlag(efn™,  (20)

w *
P=?°Im[d E(ro)], (17) 0
where

which can be interpreted as the emission rate modification Sl e N2 2
due to the dipole interaction with the out-of-phase part of the Fric(7) =kn - (1 =10) = o = w5) (21)
radiation reaction field46,47. and a limit y— 0 was taken.
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In a typical experimentx|=|r—ro|>\, where\ is the AmCw .
wavelength of the eIectrc}m|ag|1netic| wave. For lafgean A(r) = 0 X [a(ro) - dlay(r)
exponential function in the integr&R0) will oscillate very nov
rapidly and one can use the method of stationary phase to P -
evaluate the integral. J d’k f drenk (25

The principal contribution to the integral comes from the
neighborhood of those points inand k space where the Then, the integral over is simply given by a Dirad func-
variation of F,, (7) is the smallest. This means that one cantjon,
set the gradient of the functioR(7) in k space equal to .
zero as well as the derivative of the function with respect to f dre M@5-on) = 278wl

2
7. This gives the conditions " o

and one can further convert the volume integrationkin

space to an integral over the isofrequency surfage= w.

In fact, by using the relation$V, w|dk=dw, and d°k

(23) =dkcPk, and integrating over the eigenfrequeney,, the
volume integration ovek transforms to

JF
e ® = w2 - wi=0, (22)
,

Vank =X- Tkaﬁk =0.

Equations(22) and (23) determine the values of and k,, -
around which the principal contributions to the integi20) J B, ekn" 0 §( w2 - wzk):ﬂg a2k, —
arise. These points are called stationary points. Further, the J_. " "wy [Vl
stationary points are denoted by and k;. Assuming that
value of the eigenvectoa, (r) is approximately constant
an(r)=ay(r) for = close tor, and for the wave vectors

e|k (r-rop)

where V=V, w, is the group velocity of the eigenwave
(n,k). So the asymptotic form of the field(r) is given

close tok;, the integral(20) is reduced to the sum of the finally by
integrals in the vicinities of the stationary points, k) 47,2(; [a’ (ro) - d]al(r)
[48,49: A(r) EEV v : 36 kg0,
47Cw,
Ar) ~ =02 3 a(ro) - dlagy(r) (26)
where the comparatively slowly varying functioh, was
5 . replaced by its value at stationary pokf and was taken
JV d*k J dreFk(, (24)  outside the integral ovek.

To evaluate the integrals in E¢26) the analysis of the

Here an extra summation is over all possible solutions oform of the isofrequency surface in the vicinity of one of the
Egs.(22) and(23). stationary pointsk;, should be done. It is convenient to in-

Due to Eq. (22), the principal contribution to the troduce the local curvilinear coordinatgswith the origin at
asymptotic behavior oA(r) comes from the isofrequency the stationary point a}nd with one of the coordinates aligned
surface ink space defined by?, =w? or equivalently de- Perpendicular to the isofrequency surface—etg.One can
fined by wy = w, (eigenfrequencyw, is positive and real ~ €xpand functlom(gl,gz):k -X near the statlonary point as
At the same time, due to E¢R3) , the portion of the isofre-
quency surface,, =wg, Which contributes to the asymptotic h(£,&) =k, - %+ = 2 af&+ 2 Bii&iié
field, is the portion near the point on this surface where the 2{im1 6 k=1
gradienthwﬁk is parallel tox. One can express the latter

condition in an alternative fashion. Equati®8) can be sim- +O(6 )%, 27
plified as where
X:ZTwnkVnk, a,’{:( &Zh ) ,’fk:< &3h )
P\agag), TN \agagaal,

where V=V, wy is the group velocity of the eigenwave
(n,k). So Eq.(23) just says that the principal contribution to ands is a unit vector in the observation direction. All deriva-
the asymptotic behavior of the field(r) at Iarge|x|:|r tives are evaluated at the stationary padtit
—rg/|>\ comes from the neighborhood of the poirktson The result of the integration in E¢26) depends on the
the isofrequency surface,,=wq at which the eigenwave local topology of the isofrequency surface near the stationary
group velocity is collinear to observation directienSincer  point. One can generally classify the local topology of the
is positive by definition(19), V}, andx should not only be surface by its Gaussian curvature. The Gaussian curviture
collinear, but should point in the same direction as well—i.e.,is the product of the two principal curvaturéaverse radii,
XV >0. K, and K,) at a point on the surface—i.ekK=K;K,. The
Assuming that the major contribution comes from the re-points on an isofrequency surface can be elliptical, hyper-
gions near the stationary points, one makes a little error byolic, and parabolic. If the Gaussian curvati¢e>0, the
extending the integration in E@24) over all space: corresponding point on the isofrequency surface is called el-
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) Xa o) |2 p<_'ﬂ a)
Jw dé exp<| > g) >(|0[|ex 4s:gr( )|, (31

k-space \

and an asymptotic form of the vector potent{ah) at the
positionr far from the dipole is given by

Al =22 eXp[— i(wot + E[sgr(ai’) + sgr(aE)])]
n v
FIG. 1. Isofrequency and wave contours. Left: the central region c [Aﬁ;(ro) d]A%(r) 873
of the isofrequency contour for normalized frequeriey wd/27c \—/ |V" | |K” |1’2|r _r |
=d/N=0.569 of an infinite square-lattice 2D photonic crystal made nk nk 0
out of dielectric rods placed in vacuum. Rods have the refractiv
index 2.9 and radius=0.15, whered is the period of the lattice

1 1 14
(see Sec. VI for detailsThe stationary pointk?, k2, andk?, cor- &Y pomt; Wlthx-Vnk>0.h | i« field inside th
responding to the same observation direcficare indicated. Right: According to Eq(32) the electromagnetic field inside the

corresponding wave contour with folds. The shaded and black rePOtonic crystal represents a superposition of several diverg-
gions show how two equal solid-angle sections in coordinate spac'd Waves, the number of which equals the number of sta-
(right) map to widely varying solid-angle sectionskirspace(left). ~ tionary phase points on the isofrequency surfagg=wy
The wave and group velocity vectors with numbers illustrate the(Fig. 1, lef). Each of these waves has its own shape and its
fold formation of the wave contour. own propagation velocity. One comment is important here:
the asymptotic expansiof82) describes an outgoing wave
liptical, and if K<0, it is called hyperbolic. For a complex (Kn-x>0) only if the corresponding group velocity is an
surface, such as the isofrequency surface in Fig. 1, left, theytward normal to the isofrequency surfagsg =w, at point
regions with positive and negative Gaussian curvature alten- It c@n happen, however, that the group velocity becomes
nate. The surface is parabolic at the borders between regiod§ inward normal for some frequencies and regions of
with curvatures of opposite signs—e.g, convex and saddlSPaceFig. 1, lefy. In such a case the dot produgt-x is not
The lines along which the curvature changes its sign ar@0Sitive in the asymptotic expansigd2) and the expansion
called parabolic lines. The Gaussian curvature at a paraboldescribes incoming waves. In such a situation, one should

: (32

TWhereA?, (r)=a’, (r)é*n" and summation is over all station-

point is equal to zero. chang_e the sign of the small imaginary parin regularized
Further, the analysis of the asymptotic form of the integra€duation(15) [48],
o hyporbolic. Then n the close vicnty of such a stationary  A(1) =1 47545 [ Lo ol
point the following expansion holds: Vo ez (wh = wg+17)
12 X @y (r)gn (o, (33
h(éy, &) =kq-X+ 52 o &g (28)  and proceed as has been described above (EQs(32), but

L=t using the integral representation

where only quadratic terms in the expans({@i) were kept. "
By choosing the orientation of the local coordinagandé, 1 - EJ dreXmr (34)
along the main directions of the surface curvature at that X+iy iJg

pointk,=ky, one can diagonalize the matréx;. Then,

instead of Eq(19).

.1
h(g, &) =ky %+ S(alef+ a3, al=aly az=az,
IV. ANGULAR DISTRIBUTION OF RADIATED POWER

(29)
_ _ ) _ In this section, the angular dependence of the dipole radi-
With such a choice of local coordinateskrspace, the prod- ated power(18) is introduced.

uct Kfy =aja; determines the Gaussian curvature of the iso-  Using the definition of the solid angle,dQ,,

frequency surface at the stationary pdintk,. _ =d%k cos¢/|k,%, whered(Q, is the solid angle subtended
Using expansion29) the asymptotic form of the field py the surface elemenik,, ¢ is the angle between the wave
(26) is now given by vector k,, and the group velocityW = V,wn (Fig. 2), on
. N changing the integration variables, one can modify @&)
A(I’) —~ 477202 E [ank(ro) d]ank(r)e”(:x to the form
\Y n v ‘V;k

am 2 A2 2
= f dﬂnk(ﬂlwolAnk(rco d? Jkql ) 35
n J0

xﬂg dfldgzexp<%(aﬁ§+a5§§)). (30) V. [Vl cose

where the function enclosed in the brackets defines the radi-
The integral in Eq(30) is calculated simply to be ated power of the dipole per solid angleknspace:
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dQ =d(cos H)d¢ = I, d(cos b, )dpn = I dQp. (40)

According to the results presented in Sec. lll, different wave

L ' & =5 vectors can result in the group velocity with same direction
in coordinate space. That means that the equation
dQy, = idQ
FIG. 2. Diagram showing the relations betwelkerspace and nk N
coordinate space quantities. Isofrequency contours for frequencies . . .
o and wy +d are presented. should hold for each stationary wave vector, which satisfies

Xx-V/,.>0. Changing the integration variables in E85) one

5 5 ) should then sum individual contributions from all these wave
dP _ 7Pwj|An(ro) - df [k, (3e)  vectors:

dan_ \Y IV cose’ 4 2 2 2
” i |AY (o) - d]? |k

PZE:E:J dQ( w0| n]lf( 0),, | | n| ) (41)
n v J0 \Y Jnk|vnk| Cos o

To derive the angular distribution of radiated power in coor-

dinate space, one should change the integration variables in

Eq. (35) from k space to coordinate spadeig. 3). The geometrical relationship between solid anglesk in
The k-space distribution of the radiated pow@6) is a  space and coordinate spa¢ég. 3) results in the following

function of thek-space direction, given by the polak,, and  formula for the Jacobia(B9):

azimuthal, ¢, angles of the wave vectdr,. The direction v = k2K |lcos ¢

of energy propagation in a nonabsorbing periodic medium nk ni 1k '

coincides with the group velocity directigb0], whereas the Then, Eq.(41) can be transformed to the form

coordinate-space angular dependence of the radiated power 4 22 AL (ro) - dP?
is given by the corresponding group velocity direction in p:f dQ(EE 0 nkV 0 _ ) (42)
coordinate spacéd, ¢). Here 6 and ¢ are the polar and azi- 0 n o Vo VadIKR

muthal angles of the group velocity in coordinate space. Th%vherev,’;k:kank is the group velocity ant’,, determines

K space to coordinate space transformation may be expreSSﬁge Gaussian curvature of the isofrequency surface at the

formally as stationary pointk,=k;. Finally, the radiated power of the
_ dipole per solid angle in coordinate space is given by the
=f 7
€08 6= (COS b, k) 37) function enclosed in the brackets in Eg2):

& =0(cos O, dri) (39) @ _ 2 2 772‘0% |Ar1;k(r0) ) d|2 (43)
, , do TSV VRIKR]
where the function§ andg are determined from the compo-
nents of the group velocity vectaf;, X, whereX is a unit Formula(43) provides a simple route to calculate an an-
vector in the observation direction. The Jacobian of the transgular distribution of radiated power of the point dipd®
formation, Eqs(37) and(38), inside a photonic crystal. It can be interpreted as a decay rate

at which the dipole transfers energy to the electromagnetic
waves with the group velocity in the observation direction.
Then, (dI'/dQ) =(dP/dQ)/hw, is related to the probability
of the radiative transition of an excited atom with emitting a
relates a small solid angle in coordinate space with the corphoton traveling in the given observation direction.
responding solid angle ik space via Basically, formulag42) and (43) involve calculations of
the Bloch wave vectork;, ending at the isofrequency sur-
face wp=wy, the corresponding group velocity vectarg,,
the Gaussian curvature of the isofrequency surt§e and
the local coupling strength of the dipole moment with a
Bloch eigenwaven, k), given by the factoftA?, (ro)-d|. The
primary difficulty in obtaining the coordinate-space distribu-
tion of radiated powefdP/dQ}), Eq. (43), is that the wave
vector, the group velocity, and the Gaussian curvature are all
i . functions of thek-space direction, whereas the angular de-
space and coordinate space. The isofrequency contour for frequencF:)yendence of the radiative powédP/dQ) is given by the
wp IS presented. The Jacobian of the transformation, 8¥.and . . ) .
(38), is given by the raticl/dQ, .. By the definition of the solid cOrresponding group velocity directid®, ¢). To calculate
angle, the solid angle ik space isd(, =d?k cos ¢/ |k, |2, while the radiated poweftdP/d(}), Eq. (43), one should take an
the corresponding solid angle in coordinate spaai(sd%|K,/. ~ inverse of the mapping, Eqe37) and(38). This inverse is
That gives the Jacobiady, =|k,|4K.|/cose. Here ¢ is an angle  not necessarily unique. In the case of multiple stationary
between the wave vector and the group velocity veaitik.is the  points(22) and(23), one directiorn( 6, ¢) results from several
surface element of the isofrequency surface. different k-space direction$6,, ¢,) (Fig. 1). This requires

. of ag Jf ag
©9COS O I b I P ICOS Oy

Jnk (39)

FIG. 3. Diagram to derive the relation between solid anglds in
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that the inversion of the mapping, Eq87) and(38), must  volves a nonlinear interaction of the radiation and emitter,
be done point by point. the enhancement due to a small Gaussian curvature is a lin-
As a simple exercise, formul@?3) is applied here to cal- ear phenomenon related to the anisotropy of the photonic
culate an angular distribution of power radiated by a dipolecrystal and is a result of the beam-steering effect. Being a
in free space. The wave vector and the group velocity in freeneasure of the rate with which emitter transfers energy in
space are parallel and their values are simply giverikby photons with a given group velocity, the radiated pos)
=wp/Cc and c, respectively. The Gaussian curvature of thewill be enhanced if many photons with different wave vec-
isofrequency surface is a square of the inverse wave vectdors reach the same detector. The enhancement of the radi-
1/|k|2. And the appropriate normal modes are plane wavesated power, which is due to the small Gaussian curvature, is
calledphoton focusing38,39 and has a major influence on
An(r) = |V gkra the radiation pattern of the point source in a photonic crystal.
nk (2m)3 ke The physical picture gphoton focusingan be illustrated
in the following manne(Fig. 1). An isofrequency surface of
an isotropic and homogeneous medium is a sphere. There is
only one stationary point witix-V;, >0 and thus only one
dp 1 wg - wave propagating in the given Qirection. Figure 1, left, is an
(E) = §T§|d| Sir? 6, (44)  example of a part of the actual isofrequency contour of a 2D
free photonic crystal made out of dielectric rods placed in
yielding the usual results for radiation pattern in free spaceacuum(see Sec. VI for further detajlsThe anisotropy of
[45]. the crystal implies a complex nonspherical isofrequency sur-
face, which can have several stationary points with
X-V5.>0 (Fig. 1, lefy. Several waves can propagate in a
V. PHOTON FOCUSING given direction inside a photonic crystal. It is illustrative to
) 5. ) o construct thavave surfacen coordinate space. To construct
“The factor|Af, (ro)-d|? in relation (43), giving the cou-  the wave surface one should plot a ray in the observation
pling strength of dipole moment with the photonic crystal gjrectioni starting from the point source position and having
eigenmode :_;lt the cﬁpole position, can dlsplay a complex ange length of the group velocitpv’,|. An example of the
gular behavior, which depends on the eigenmode structurgaye contour is presented in Fig. 1, right. The existence of
and dipole orientation with respect to the crystal lattice. Tomultiple stationary points implies that the wave surface is a

study the net result of the influence of a photonic crystal Orbomplex multivalued surface parametrized by wave vector
the radiation pattern of the emitter, it is instructive to modelkn_ Figure 1 illustrates how this can result in a fold of the

an isotropic light source producing a uniform distribution of \yave surface.

wave vectors. Moreover, an isotropic point source is usually | the vicinity of the parabolic point with zero Gaussian
a good model for a common experimental situation of emit-cyryature an isofrequency surface is flat. That implies that a
ters with random distribution of dipole mome(dye mol-  yery Jarge number of eigenwaves with wave vectors in the
ecules[51-59, quantum dot§51,5@, etc). Then, the radi-  yicinity of a parabolic point have nearly the same group
ated powel(43) should be averaged over the dipole momentyg|qcity, contributing to the energy flux in the direction par-

where &, is a polarization vector orthogonal to the wave
vectork. Then, the radiated power is given by E43),

orientation, which simply yields a factor ¢d|*/3: allel to that group velocity. In Fig. 1, it is illustrated by
dp (2¢)3 A% ()2 mapping two equal solid-angle sections along different ob-
(-) =>> —ZZK—OV, (45)  servation directions in coordinate space onto the correspond-
d /i 5T Vop [VidlKhd ing solid-angle sections ik space[60]. The black solid-

gngle section in coordinate space maps onto a single smaller

solid-angle section ik space, implying a “defocusing” of

mae energy flux. The shaded solid-angle section in coordinate

space, which crosses three different branches of the wave

contour, maps onto two different and larger solid-angle sec-
dP Yl -1 tions ink space, implying enhanceme(ifocusing”) of the
YA 2 2 Vi KA (46)  energy flux in this group velocity direction. This results in a

boonow strongly varying angular distribution of the emission inten-
The radiated power46) is proportional to the inverse Sity with sharp singularitiescaustics.

group velocity|V?, | and to the inverse Gaussian curvature

[Kri| ™ of the isofrequency surface. A large enhancement of \; \yMERICAL EXAMPLE: 2D PHOTONIC CRYSTAL

the emission rate is expected when the group velocity is

small. This can be interpreted as a consequence of the long In this section the theoretical approach developed in the

interaction time of the emitter and the radiation field previous sections is applied to the numerical calculation of

[57-59. In a similar fashion, a small Gaussian curvaturethe radiation pattern of a point source placed inside a 2D

formally implies an enhancement of the radiated powemphotonic crystal. A point source is situated inside the crystal

along a certain observation direction. While spontaneousind it produces an isotropic and uniform distribution of wave

emission enhancement due to a small group velocity invectorsk, with the frequencyw,.

Here the result was normalized to the radiated power in fre
space. Now, the factdA’,(ro)|? gives the field strength at
the source position and has no angular dependence. So t
radiation pattern of a point isotropic emitter is defined by

056611-7



DMITRY N. CHIGRIN PHYSICAL REVIEW E 70, 056611(2004)

1.0, 10F

T ——] L Vy (0] nay
1 E r /

e
=)

&-n =0.565 g é
’ Vak

Q=034 M"‘ 0.0 : [10]+

L 2=031—> 4 o v
o T

I
'S
T

Normalized Frequency

o
N
T

=

e
=)

r X M

FIG. 4. Photonic band structure of TM modes for the square- 0f
lattice photonic crystal with refractive index of the rods2.9, -1.0 0.0 1.0
lattice constant, and radius of the rods 0.d5The frequency is
normalized toQ=wd/27c=d/\. Herec is the speed of light in FIG. 6. Wave contour corresponding to the normalized fre-
vacuum. The insets show the first Brillouin zone of the crystal withduency{2=0.31.The group velocity is plotted in units of the speed

the irreducible zone shaded light grégft) and a part of the lattice  Of light in vacuum. High-symmetry directions of the square lattice
(right). are specified.

An infinite 2D square lattice of dielectric rods in vacuum frequency contours below and above the stop band edge fre-
(Fig. 4 is considered in the case of in-plane propagationquency show an important difference. As the frequency stays
Consequently, the problem of an electromagnetic wave intetselow the stop band, the isofrequency contoutlesedand
action with a 2D photonic crystal is reduced to two indepen-almost circular(Fig. 5. The corresponding wave contour
dent problems, which are called TE and TM, when the mag¢see Sec. V for definitions presented in Fig. 6. To calculate
netic or electric field is parallel to the axis of the rods. In thethe group velocity, the plane-wave expansion metf@t
illustrative example presented in this section, all numericabnd the Hellmann-Feynmafi4] theorem were used. The
calculations have been performed for TM modes of the crysgroup velocity|V!,| and the Gaussian curvatui€), | of the
tal. The photonic band structure of the crystal made of thésofrequency contours are relatively slow functions of the
rods with the refractive inder=2.9 is presented in Fig. 4. wave vector. The Gaussian curvature does not vanish for any
The band structure has been calculated using the plane waweave vector. This implies a small anisotropy in the energy
expansion metho@b1]. flux inside the crystal.

In Fig. 5 isofrequency contours of the crystal are pre- To find how a radiated power varies in coordinate space,
sented for two frequencies belonging to the first photonicone should calculate the group velocity and the Gaussian
band(Fig. 4). To plot an isofrequency contour, the photonic curvature on the isofrequency contaifk) = g as functions
band structure for all wave vectors within the irreducible BZ of the angle in coordinate space. As the wave contour is a
was calculated and then the equatiotk)=w, was solved  single-valued function, the inverse of the mapping, E8%)
for a given frequencys,. Frequencies have been chosen be-and(38), from k space to coordinate space is one to one and
low (2=0.31) and above()=0.34 the low edge frequency can be easily done. In Fig. 7 a polar plot of the radiated
of the stop band in th&X direction of the crystal. The iso- power is presented, which shows a small amount of aniso-

| ,
[o1] [11]

/

Intensity (arb.u.nits)
20 15 1.0/ 05

[10]-

FIG. 5. Isofrequency contours of the square-lattice photonic
crystal for the normalized frequenci€és=0.31 (dashed ling and
0=0.34(solid line). The parabolic points are marked by the black
dots. The first Brillouin zone of the lattice is plotted in order to  FIG. 7. Angular distribution of radiated power corresponding to
show the spatial relation between zone boundary and isofrequendiie normalized frequency2=0.31. High-symmetry directions of
contours. the square lattice are specified.
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10t Vy o1 g
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“L0F i e
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FIG. 8. Wave contour corresponding to the normalized fre-
quency{)=0.34. The group velocity is plotted in units of the speed
of light in vacuum. The directions corresponding to the folds of the
wave contour are shown.

tropy. The angular distribution of the radiated power pos-

sesses fourfold rotational symmetry of the crystal.

With an increase of the frequency up to the stop band, the
topology of the isofrequency contour abruptly changes. The

stop band developes in th& direction and the isofrequency
contour becomespen (Fig. 5. This topology changes the
result in the complex contour with alternating regions of dif-

PHYSICAL REVIEW E 70, 056611(2004)

0.0 0.015 0.03

ferent Gaussian curvature signs. Parabolic points, where the
Gaussian curvature vanishes, are marked by black dots in
Fig. 5. As has been discussed in Sec. V, a vanishing curva-
ture results in the folds of the wave contour. The wave con-
tour corresponding to the isofrequen@y=0.34 is presented

in Fig. 8. A pair of the parabolic points in the first quarter of
the Brillouin zone results in a cuspidal structure of the wave
contours in the first quarter of coordinate space. This dra-

matically increases anisotropy of the energy flux.

The folds in the wave contours yield that the inverse of
the mapping, Eq9.37) and(38), from k space to coordinate
space is not one to one anymore. To apply the forng@

Intensity (arb.units)

80 60 40 20

FIG. 9. Angular distribution of the radiated power correspond-
ing to the normalized frequendy=0.34. The directions of infinite
radiated powetcaustig coincide with the directions of the folds of
the wave contou¢Fig. 8).

FIG. 10. (a) FDTD calculation. Map of the modulus of the
Poynting vector field for a 58 50 rods photonic crystal excited by
a point isotropic source with the normalized frequeriey 0.34.
The location of the crystal in the simulation domain is shown to-
gether with asymptotic directions of photon focusing caustick.
Isofrequency contours of the square lattice photonic crystalid
line) and air(dashed ling for normalized frequency)=0.34. The
dash-dotted line is a construction line. The wave vector correspond-
ing to the parabolic pointblack doj, k!, and the wave vector in
air, obtained from the momentum conservation law at the crystal—
air interface k&', are shown.

to calculate the angular distribution of the radiated power in
such a case, one should proceed as follows. At first, the
Gaussian curvature as a function of the wave vector should
be calculated. Then, wave vectors and group velocities cor-
responding to the parabolic points on the isofrequency sur-
face should be found. An inversion of the mapping, £8%)

and (38), should be calculated separately for each of the
branches of the wave contour. The total radiated power is a
sum of the different contributions from these branches. In
Fig. 9 the polar plot of the radiated pow@6) corresponding

to the normalized frequenc§2=0.34 is presented. The en-
ergy flux is strongly anisotropic for this frequency, showing a
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1.0E wf
/
0.05 [10]
E -V,
FIG. 11. Isofrequency contours of the square-lattice photonic E
crystal for the normalized frequenci€3=0.55 (dotted ling, BT T
=0.565 (solid and dashed lingsand 2=0.58 (dash-dotted ling -1.0 0.0 10

Two branches of the isofrequency contour(df0.565 are plotted

as solid and dashed lines. The parabolic points are marked by the FIG'Ql_Z'O \5N6a5vesclc_>n:jours corresponding to the norr;allzedl_f(;e-
black dots. The first Brillouin zone of the lattice is plotted in order quency()=0.565. Soliddashegiwave contour corresponds to soli

to show the spatial relation between the zone boundary and isofrégaSheo? |sofrequ_ency contour in F'_g' 1.1' The group velpcny_ 'S
quency contours. plotted in the units of the speed of light in vacuum. The directions

corresponding to the folds of the wave contour are shown.

relatively small intensity in the directions of the stop band

and infinite intensity(caustic$ in the directions of the folds.
To substantiate this behavior, finite-difference time do-

main (FDTD) calculations were dong2,63. The simulated

[sl'iriuct;&ea)\jva_?h: ?c??I(()afltaétécrﬁe(:fo?I?r:icrgt(t:ic:rgdvie;g r\gﬁg\eg:j =0.58 have nonvanishing Gaussian curvature for all wave
9- : P ' vectors leading to only a limited anisotropy of the energy

mfﬁ'&%tgfgﬁdﬁtg?atcz |e$;]/2 tgifnﬁtlgf[gﬁr%;?]ii;o \:\?;;aﬁisa_hux, the isofrequency contour for the normalized frequencies
cretized into squares with a side=d/16. The total simula- 1=0.565 displays several parabolic points. Moreover, the

tion region was 808 800 cells plus a 16-cell-wide perfectly isofrequency contour consists of two branches with slightly

D L different shapegsolid and dashed lines in Fig. 11Two
m:;cg]%%é?ggf MaL)c [?fght-rggng?msésogg %'C I'g.m ;o#(;ize branches yield two wave contours with cuspidal folds in co-
W yacu Ity sour6e,63 wi rdinate spacé€Fig. 12. Applying the formula(46) to the

mogeneous spacial dependence and sinusoidal temporal O?%'diated power calculation, one should sum over contribu-

pendence of the signal. FDTD calculations were performeqions coming from all branches of the wave contours in co-

using the code described in R§B5]. . S ;
) . ordinate space. An angular distribution of radiated power for
In Fig. 10@) a map of the modulus of the Poynting vector the normalized frequenci€3=0.565 is presented in Fig. 13.

field is shown. The point source is placed in the middle OfWithin the first quarter of coordinate space, four caustics

the crystal. The field map is shown for one instant time step, .., . . . . : i
The snapshots were captured after 4096 time steps, where tWéth infinite radiated power present in the energy flux corre

time step was 0.99 of the Courant value. The structure of the
crystal is superimposed on the field map. From Figal0
one can see that the emitted light is focused in the directions
coinciding with the predicted directions of the foldslack
lines inside the crystal

The radiation experiences refraction when it approaches
the photonic crystal—air interfad&ig. 10a)]. To predict the
focusing direction outside the crystal the wave vector dia-
gram can be analyzefFig. 1Qb)]. In Fig. 1Qb), isofre-
guency contours of the crystéolid line) and air (dashed
line) for normalized frequency)=0.34 together with the
construction lingdash-dotted lineare shown. The construc-
tion line is a line, which is perpendicular to the crystal-air
interface. Applying the momentum conservation law to the
tangential component of the wave vector at the parabolic
point, the wave vector of refracted wave can be obtained.
One can see from Fig. 1§) that such a simple analysis gives  FIG. 13. Angular distribution of radiated power corresponding
a reasonable agreement with the rigorous FDTD calculato the normalized frequenc2=0.565. The directions of infinite
tions. radiative poweicaustig coincide with the directions of the folds of

In Figs. 11-13, a more complicated example of the anisothe wave contour.

tropy of a photonic crystal is presented. Isofrequency con-
tours for three frequencies belonging to the second photonic
band of the crystal are plotted in Fig. 11. While isofrequency
contours for the normalized frequenci€s=0.55 and ()
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sponded to four parabolic points on two branches of the isowith the field, and the Gaussian curvature on the isofre-
frequency contours. quency surface corresponding to the frequency of the oscil-
lating dipole. That can be done by the simple plane-wave
expansion method and is not computationally demanding. A
numerical example was given for a square-lattice 2D photo-
nic crystal. It was shown by applying the developed formal-

VIl. SUMMARY

In this paper, by analyzing a dipole field in the radiation i : . .
zone it was shown that the principal contribution to the far'SM @nd substantiated by FDTD calculations that if a dipole

field of the dipole radiating in a photonic crystal comes fromT€quency is within a partial photonic band gap, the far-field
the regions of the isofrequency surface in the wave vectof2diation pattem is strongly modified with respect to the di-
space at which the eigenwave group velocity is parallel P0l€ radiation pattern in vacuum, demonstrating suppression
observation directioi. It was also shown that the anisotropy N the directions of the spatial stop band and enhancement in
of a photonic crystal reveals itself in the strongly nonspheri-N€ diréction of the group velocity, which is stationary with
cal wave front, leading to modifications of both the far-field "€SPect to a small variation of the wave vector.

radiation pattern and spontaneous emission rate. By system-
atic analysis of the Maxwell equations a simple formula to
calculate an angular distribution of the radiated power due to  This work was partially supported by EU-IST Project
a point dipole placed in a photonic crystal was derived. TheNo. APPTech IST-2000-29321 and German BMBF Project
formula only involves calculations of the wave vectors, theNo. PCOC 01 BK 253. The author acknowledges A. V.
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