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An asymptotic analysis of the radiation pattern of a classical dipole in a photonic crystal possessing an
incomplete photonic bandgap is presented. The far-field radiation pattern demonstrates a strong modification
with respect to the dipole radiation pattern in vacuum. Radiated power is suppressed in the direction of the
spatial stop band and strongly enhanced in the direction of the group velocity, which is stationary with respect
to a small variation of the wave vector. An effect of radiated power enhancement is explained in terms of
photon focusing. A numerical example is given for a square-lattice two-dimensional photonic crystal. Predic-
tions of asymptotic analysis are substantiated with finite-difference time-domain calculations, revealing a
reasonable agreement.

DOI: 10.1103/PhysRevE.70.056611 PACS number(s): 42.70.Qs, 42.25.Fx, 42.50.Pq, 81.05.Zx

I. INTRODUCTION

Purcell [1] was the first who pointed out that the sponta-
neous emission of an atom or a molecule depends on its
environment. Since then, the influence of nontrivial bound-
ary conditions in the vicinity of an excited atom on its emis-
sive properties has been the subject of active research[2–4].
Important examples of such an influence are an enhancement
and inhibition of the spontaneous emission by a resonant
environment[1] —e.g., microcavity. These phenomena were
first demonstrated by Goyet al. [5] and Kleppner[6], respec-
tively, and continue to be the subject of intense research not
only due to their contribution to the better understanding of
the light matter interaction, but to a great extent, due to the
practical importance of controlling the light emission pro-
cess. Light-emitting diodes[7–9] and thresholdless lasers
[10–12] are just a few examples, where the light extraction
and the spontaneous emission control by means of optical
microcavity lead to improved performance.

The dielectric periodic medium, also called photonic crys-
tal [13,14], is a good example of nontrivial boundary condi-
tions on an electromagnetic field. Such an inhomogeneous
medium can possess a complete photonic band gap—i.e., a
continuous spectral range within which linear propagation of
light is prohibited in all spatial directions. One of the conse-
quences is an inhibited spontaneous emission for the atomic
transition frequency inside the complete photonic band gap
[15–17]. There are no electromagnetic modes avaliable to
carry the energy away from the atom at complete photonic
band gap frequencies. Although the existence of a complete
photonic band gap usually requires dielectric materials with
relatively high refractive indexsn.2d arranged in a three-
dimensional s3Dd lattice [13,14], photonic crystals are
proved to be useful artificial materials to modify the light
emission even in the absence of complete photonic band gap.

For example, it was demonstrated that the external quantum
efficiency of light-emitting diodes can be significantly im-
proved by introducing a two-dimensionals2Dd photonic
crystal [18,19]. Another example is a highly directive light
source employing a 3D photonic crystal[20,21].

An intrinsic property of photonic crystals is their compli-
cated photonic band structure, which can be engineered by
choosing an appropriate combination of materials and lattice
geometry[13,14]. Being able to modify in purpose the emis-
sion rate within a specific spectral range and simultaneously
in specific directions could add a significant flexibility in
improving light sources.

A number of papers were devoted to the study of the
spontaneous emission in photonic crystals[15–17,22–32].
But to the author’s knowledge, questions like the modifica-
tion of the emission rate in a specific direction and modifi-
cation of the emission pattern due to the photonic crystal
environment have not been yet addressed. Special opportu-
nities in controlling the directionality of emission exist
within the spectral ranges of allowed photonic bands, where
photonic crystals display strong dispersion and anisotropy.
The consequence of anisotropy is the beam-steering effect
[33,34], which in essence means that the group velocity di-
rection of the medium’s eigenmode does not necessarily co-
incide with its wave vector direction. A beam-steering effect
is known to be the reason for a number of anomalies in an
electromagnetic beam propagation inside a photonic crystal,
which are usually referred to as superprism or ultrarefractive
phenomena[33–35]. For example, an extraordinary large or
negative beam bending[35], beam self-collimation[36,37],
and photon focusing[38,39] were reported. The last phenom-
enon is similar to phonon focusing, a phenomenon observed
in the ballistic transport of phonons in crystalline solids[40].

The term “phonon focusing” refers to the strong aniso-
tropy of heat flux in crystalline solids. First observed in 1969
by Taylor et al. [41], phonon focusing is a property of all
crystals at low temperatures. The term “focusing” does not
imply a bending of particle paths, as in the geometrical-
optics sense of the term. The physical reason for the phonon
focusing is the beam steering. In particular, waves with quite
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different wave vectors can have nearly the same group ve-
locity, so the energy flux associated with those waves
bunches along certain crystalline directions. In some special
cases, a heat flux can display intricate focusing caustics,
along which flux tends to infinity[40]. This happens when
the direction of the group velocity is stationary with respect
to a small variation of the wave vector.

One can expect that a similar phenomenon takes place in
photonic crystals[38,39]. An optical cousin of the acoustic
phenomenon opens a unique opportunity to design a caustics
pattern on purpose, enhancing and suppressing emission in
specific directions.

In this paper a description of the angular distribution of
the radiated power of a classical dipole embedded in a pho-
tonic crystal is presented. It is assumed that only propagating
modes of the photonic crystal contribute to the far-field ra-
diation. The emission process is treated using an entirely
classical model, similar to the one in[22,24]. Then in the
steady-state limit the spontaneous emission rateG is related
to the classical radiated powerPsr 0d=sv /2dImfd* ·Esr 0dg via
G=P/"v [42], whered is a real dipole moment,Esr 0d is a
field in the system, andr 0 is the dipole location.

The general expressions for the field and emission rate of
the point dipole radiating in an arbitrary periodic medium are
reviewed in Sec. II. The evaluation of the asymptotic form of
the radiated field is given in Sec. III. In Sec. IV, the angular
distribution of the radiated power is introduced. A modifica-
tion of the radiation pattern is discussed in terms of photon
focusing in Sec. V. A numerical example of an angular dis-
tribution of emission power radiated from the point isotropic
light source is presented in Sec. VI for the case of a two-
dimensional square lattice photonic crystal of dielectric rods
in air. Summary is given in Sec. VII.

II. NORMAL-MODE EXPANSION OF DIPOLE FIELD

In this paper, a general linear, nonmagnetic, dielectric me-
dium with arbitrary 3D periodic dielectric function«sr d
=«sr +Rd is studied. HereR is a vector of the direct Bravais
lattice,R=oi l iai, l i is an integer, andai is a basis vector of
the periodic lattice. It is assumed that a medium is infinitely
extended in space and that no absorption happens. To treat
the emission process the mode radiation theory[43] is used
in the framework of the classical electrodynamics[14,22,24].
In this section, the main results reported in[22,24] are re-
viewed.

In Gaussian units, Maxwell’s equations in such a medium
have the form

= 3 E = −
1

c

] H

] t
, s1d

= 3 H =
1

c
«sr d

] E

] t
+

4p

c
J, s2d

= · f«sr dEg = 0, s3d

= ·H = 0. s4d

Here, the electric(magnetic) field is denoted byE sHd, andc
is a speed of light in vacuum. An electromagnetic field is
produced by a current sourceJ and the charge density is
zero,r;0. Then one can choose the transverse(Coulomb)
gauge for the vector potentialA in the form [43]

= · f«sr dAg = 0. s5d

The absence of the charge density implies that the scalar
potentialw is zero. The electric and magnetic fields can be
written in terms of the vector potentialA via

E = −
1

c

] A

] t
, s6d

H = = 3 A . s7d

Combining Eqs. (6) and (7) with Maxwell’s equations
(1)–(4) one obtains the wave equation for the vector potential
A:

= 3 = 3 A +
1

c2«sr d
]2A

] t2
=

4p

c
J. s8d

In what follows, a simplest form of the current densityJ is
taken,

Jsr ,td = − iv0ddsr − r 0de−iv0t, s9d

for a harmonically oscillating dipole with a frequencyv0 and
a real dipole momentd, located at the positionr 0 inside a
photonic crystal, switched on att=0.

The field of an arbitrary light source embedded in a peri-
odic medium can be constructed by a suitable superposition
of the medium’s eigenwaves(e.g.,[44]):

Asr ,td = o
n
E

BZ

d3knCnkstdAnksr d. s10d

Here Anksr d and Cnkstd are the Bloch eigenvector(normal
modes) and the time-dependent amplitude coefficient of the
eigenwavesn,kd, respectively. The form of the amplitude
coefficient is defined by the particular nature of the light
source. The integration is performed over the first Brillouin
zone (BZ) of the crystal and the summation is carried out
over different photonic bands, wheren is the band index and
k is the wave vector.

EigenwavesAnksr d satisfy the homogeneous wave equa-
tion

= 3 = 3 Ank −
vnk

2

c2 «sr dAnk = 0 s11d

and also fulfill the orthogonalization, normalization, and clo-
sure conditions given by

E
V

d3r«sr dAnksr dAn8k8
* sr d = Vdnn8dsk − k8d, s12d
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E d3kAnksr dAnk
* sr 8d = I«'

dsr − r 8d, s13d

where vnk is the Bloch eigenfrequency,V is the volume
of the unit cell of the crystal, * denotes the complex conju-
gate, andI«'

is the identity operator on the subset of the
«-transverse vector functions as defined in[43]. The Bloch
eigenvector Anksr d obeys the gauge condition
= ·f«sr dAnksr dg=0 and is therefore transverse with respect to
this gauge. Equations(12) and(13) ensure that the eigenvec-
tors Anksr d form a complete set of orthonormal«-transverse
functions. Here any vector that satisfies the«-transverse
gauge condition(5) is called “«-transverse”[22].

The amplitude coefficientsCnkstd can be easily obtained
from the wave equation(8). Then, the electromagnetic field
at the pointr radiated by the point dipole located atr 0 can be
represented in terms of Bloch modes as

Asr ,td = − i
4pcv0

V o
n
E

BZ

d3kn

fank
* sr 0d ·dg

svnk
2 − v0

2d

3 anksr deikn·sr−r 0de−iv0t, s14d

where the Bloch theoremAnksr d=anksr deikn·r has been used.
The integrand in Eq.(14) has a pole atvnk

2 =v0
2, and the

integral is singular. This is a typical behavior for any reso-
nance system, where dissipation is neglected. The standard
way to regularize the integral is to add a small imaginary part
to v0

2. The result of the integration then becomes dependent
on the sign of this imaginary part. The criterion for determin-
ing the sign will be discussed below. A regularized integral
(14) reads

Asr ,td = − i
4pcv0

V o
n
E

BZ

d3kn

fank
* sr 0d ·dg

svnk
2 − v0

2 − igd

3 anksr deikn·sr−r 0de−iv0t. s15d

When a light source is situated in an inhomogeneous me-
dium, it is immersed in its own electric field emitted at an
earlier time and reflected from inhomogeneities in the me-
dium (radiation reaction field). By conservation of energy,
the decay rate at which energy is radiated is equal to the rate
at which the charge distribution of the source does work on
the surrounding electromagnetic field. For an arbitrary cur-
rent densityJ, the radiated power is given by[45]

Pstd = −E
V

d3rJ sr ,td ·Esr ,td, s16d

whereV is a volume containing a current density sourceJ
and it is related to spontaneous emission rate viaG=P/"v0
[42]. Then, the time-averaged radiated power of the point
dipole (9) is given by

P =
v0

2
Imfd* ·Esr 0dg, s17d

which can be interpreted as the emission rate modification
due to the dipole interaction with the out-of-phase part of the
radiation reaction field[46,47].

To define the radiation reaction field, let us consider an
excited molecule or atom at a positionr 0 in a photonic crys-
tal. Assuming that the presence of the molecule does not
change the band structure of the crystal, the only possible
mode it can emit in is an eigenmode of the photonic crystal.
Then, the radiation reaction field can be chosen in the form
of the normal mode expansion(15), which is valid for any
point r in the crystal, which is distinct from(but as close as
required to) the dipole locationr 0. Then the radiated power
(emission rate) (17) of the classical dipole in a photonic crys-
tal is given by[22,24]

P =
p2v0

2

V o
n
E d2kn

uAnksr 0d ·du2

uVnku
, s18d

where Vnk ==kvnk, the group velocity of the eigenwave
sn,kd is introduced.

Formula(18) gives the total time-averaged radiated power
of the dipole situated inside a photonic crystal in the instan-
taneous backaction regime. It reflects the possible emission
rate modification due to photonic crystal environment in the
steady-state limit, while keeping emission dynamics modifi-
cation out of the consideration. The internal dynamics of the
emitter(emission, absorption, reemission, reabsorption, etc.)
is completely lost within this approximation by the specific
choice of the test dipole(9) (the radiation reaction field).
This approximation corresponds to the Weisskopf-Wigner
approximation in the quantum theory of the spontaneous
emission of a two-level atom in an inhomogeneous medium
[30,43]. Although the chosen approximation gives the correct
result for emission rate modification in most of the situations
considered in the presented paper, special care should be
taken for frequencies near the photonic band edges or other
van Hove singularities, where the instantaneous backaction
approximation is broken due to a significant modification of
emission dynamics[17,30].

III. ASYMPTOTIC FORM OF DIPOLE FIELD

In this section, a radiating dipole field is analyzed in the
radiation zone. For that, an asymptotic form of the integral
(15) is evaluated and analyzed. In what follows, an
asymptotic analysis of the Green’s function developed by
Maradudin[48] for the phonon scattering problem is used.

Using the integral representation

1

x − ig
= −

1

i
E

0

`

dte−ixt−gt, s19d

one can rewrite Eq.(15) as

Asr d =
4pcv0

V o
n
E

BZ

d3kn

3 E
0

`

dtfank
* sr 0d ·dganksr deiFnkstd, s20d

where

Fnkstd = kn · sr − r 0d − tsvnk
2 − v0

2d s21d

and a limitg→0 was taken.
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In a typical experimentuxu= ur −r 0u@l, where l is the
wavelength of the electromagnetic wave. For largeuxu an
exponential function in the integral(20) will oscillate very
rapidly and one can use the method of stationary phase to
evaluate the integral.

The principal contribution to the integral comes from the
neighborhood of those points int and k space where the
variation ofFnkstd is the smallest. This means that one can
set the gradient of the functionFnkstd in k space equal to
zero as well as the derivative of the function with respect to
t. This gives the conditions

] Fnk

] t
= vnk

2 − v0
2 = 0, s22d

=kFnk = x − t=kvnk
2 = 0. s23d

Equations(22) and (23) determine the values oft and kn
around which the principal contributions to the integral(20)
arise. These points are called stationary points. Further, the
stationary points are denoted bytn and kn

n. Assuming that
value of the eigenvectoranksr d is approximately constant
anksr d<ank

n sr d for t close totn and for the wave vectors
close tokn

n, the integral(20) is reduced to the sum of the
integrals in the vicinities of the stationary pointsstn ,kn

nd
[48,49]:

Asr d <
4pcv0

V o
n

o
n

fank
n* sr 0d ·dgank

n sr d

3 E
kn

n
d3knE

tn

dteiFnkstd. s24d

Here an extra summation is over all possible solutions of
Eqs.(22) and (23).

Due to Eq. (22), the principal contribution to the
asymptotic behavior ofAsr d comes from the isofrequency
surface ink space defined byvnk

2 =v0
2 or equivalently de-

fined by vnk =v0 (eigenfrequencyvnk is positive and real).
At the same time, due to Eq.(23) , the portion of the isofre-
quency surfacevnk =v0, which contributes to the asymptotic
field, is the portion near the point on this surface where the
gradient=kvnk

2 is parallel tox. One can express the latter
condition in an alternative fashion. Equation(23) can be sim-
plified as

x = 2tvnkVnk ,

where Vnk ==kvnk is the group velocity of the eigenwave
sn,kd. So Eq.(23) just says that the principal contribution to
the asymptotic behavior of the fieldAsr d at large uxu= ur
−r 0u@l comes from the neighborhood of the pointskn

n on
the isofrequency surfacevnk =v0 at which the eigenwave
group velocity is collinear to observation directionx. Sincet
is positive by definition(19), Vnk

n andx should not only be
collinear, but should point in the same direction as well—i.e.,
x ·Vnk

n .0.
Assuming that the major contribution comes from the re-

gions near the stationary points, one makes a little error by
extending the integration in Eq.(24) over all space:

Asr d <
4pcv0

V o
n

o
n

fank
n* sr 0d ·dgank

n sr d

3 E
−`

`

d3knE
−`

`

dteiFnkstd. s25d

Then, the integral overt is simply given by a Diracd func-
tion,

E
−`

`

dteitsv0
2−vnk

2 d = 2pdsv0
2 − vnk

2 d,

and one can further convert the volume integration ink
space to an integral over the isofrequency surfacevnk =v0.
In fact, by using the relationsu=kvnkudk=dvnk and d3k
=dkd2k, and integrating over the eigenfrequencyvnk, the
volume integration overk transforms to

E
−`

`

d3kne
iknsr−r 0ddsv0

2 − vnk
2 d=R

−`

`

d2kn
p

v0

eikn·sr−r 0d

uVnku
,

where Vnk =¹kvnk is the group velocity of the eigenwave
sn,kd. So the asymptotic form of the fieldAsr d is given
finally by

Asr d <
4p2c

V o
n

o
n

fank
n* sr 0d ·dgank

n sr d
uVnk

n u R
−`

`

d2kne
ikn·sr−r 0d,

s26d

where the comparatively slowly varying functionVnk was
replaced by its value at stationary pointkn

n and was taken
outside the integral overk.

To evaluate the integrals in Eq.(26) the analysis of the
form of the isofrequency surface in the vicinity of one of the
stationary points,kn

n, should be done. It is convenient to in-
troduce the local curvilinear coordinatesji with the origin at
the stationary point and with one of the coordinates aligned
perpendicular to the isofrequency surface—e.g.,j3. One can
expand functionhsj1,j2d=kn·x̂ near the stationary point as

hsj1,j2d = kn
n · x̂ +

1

2 o
i,j=1

2

ai j
n jij j +

1

6 o
i,j ,k=1

2

bi jk
n jij jjk

+ Osj1,j2d4, s27d

where

ai j
n = S ]2h

] ji ] j j
D

n

, bi jk
n = S ]3h

] ji ] j j ] jk
D

n

,

andx̂ is a unit vector in the observation direction. All deriva-
tives are evaluated at the stationary pointkn

n.
The result of the integration in Eq.(26) depends on the

local topology of the isofrequency surface near the stationary
point. One can generally classify the local topology of the
surface by its Gaussian curvature. The Gaussian curvatureK
is the product of the two principal curvatures(inverse radii,
K1 and K2) at a point on the surface—i.e.,K=K1K2. The
points on an isofrequency surface can be elliptical, hyper-
bolic, and parabolic. If the Gaussian curvatureK.0, the
corresponding point on the isofrequency surface is called el-
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liptical, and if K,0, it is called hyperbolic. For a complex
surface, such as the isofrequency surface in Fig. 1, left, the
regions with positive and negative Gaussian curvature alter-
nate. The surface is parabolic at the borders between regions
with curvatures of opposite signs—e.g, convex and saddle.
The lines along which the curvature changes its sign are
called parabolic lines. The Gaussian curvature at a parabolic
point is equal to zero.

Further, the analysis of the asymptotic form of the integral
(26) is undertaken, when the stationary points are elliptical
or hyperbolic. Then in the close vicinity of such a stationary
point the following expansion holds:

hsj1,j2d = kn
n · x̂ +

1

2 o
i,j=1

2

ai j
n jij j , s28d

where only quadratic terms in the expansion(27) were kept.
By choosing the orientation of the local coordinatesj1 andj2
along the main directions of the surface curvature at that
point kn=kn

n, one can diagonalize the matrixai j
n . Then,

hsj1,j2d = kn
n · x̂ +

1

2
sa1

nj1
2 + a2

nj2
2d, a1

n = a11
n , a2

n = a22
n .

s29d

With such a choice of local coordinates ink space, the prod-
uct Knk

n =a1
na2

n determines the Gaussian curvature of the iso-
frequency surface at the stationary pointkn=kn

n.
Using expansion(29) the asymptotic form of the field

(26) is now given by

Asr d <
4p2c

V o
n

o
n

fank
n* sr 0d ·dgank

n sr d
uVnk

n u
eikn

n·x

3R
−`

`

dj1dj2expS i uxu
2

sa1
nj1

2 + a2
nj2

2dD . s30d

The integral in Eq.(30) is calculated simply to be

E
−`

`

dj expSi
xa

2
j2D =Î 2p

xuau
expS−

ip

4
sgnsadD , s31d

and an asymptotic form of the vector potential(14) at the
position r far from the dipole is given by

Asr ,td < o
n

o
n

expF− iSv0t +
p

4
fsgnsa1

nd + sgnsa2
ndgDG

3
c

V

fAnk
n* sr 0d ·dgAnk

n sr d
uVnk

n u
8p3

uKnk
n u1/2ur − r 0u

, s32d

whereAnk
n sr d=ank

n sr deikn
n·r and summation is over all station-

ary points withx ·Vnk
n .0.

According to Eq.(32) the electromagnetic field inside the
photonic crystal represents a superposition of several diverg-
ing waves, the number of which equals the number of sta-
tionary phase points on the isofrequency surfacevnk =v0
(Fig. 1, left). Each of these waves has its own shape and its
own propagation velocity. One comment is important here:
the asymptotic expansion(32) describes an outgoing wave
skn

n ·x.0d only if the corresponding group velocity is an
outward normal to the isofrequency surfacevnk =v0 at point
kn

n. It can happen, however, that the group velocity becomes
an inward normal for some frequencies and regions ofk
space(Fig. 1, left). In such a case the dot productkn

n ·x is not
positive in the asymptotic expansion(32) and the expansion
describes incoming waves. In such a situation, one should
change the sign of the small imaginary partg in regularized
equation(15) [48],

Asr d = − i
4pcv0

V o
n
E

BZ

d3kn

fank
* sr 0d ·dg

svnk
2 − v0

2 + igd

3 anksr deikn·sr−r 0d, s33d

and proceed as has been described above, Eqs.(20)–(32), but
using the integral representation

1

x + ig
=

1

i
E

0

`

dteixt−gt s34d

instead of Eq.(19).

IV. ANGULAR DISTRIBUTION OF RADIATED POWER

In this section, the angular dependence of the dipole radi-
ated power(18) is introduced.

Using the definition of the solid angle,dVnk
=d2k cosw / uknu2, wheredVnk is the solid angle subtended
by the surface elementd2kn, w is the angle between the wave
vector kn, and the group velocityVnk ==kvnk (Fig. 2), on
changing the integration variables, one can modify Eq.(18)
to the form

P = o
n
E

0

4p

dVnkSp2v0
2

V

uAnksr 0d ·du2

uVnku
uknu2

cosw
D , s35d

where the function enclosed in the brackets defines the radi-
ated power of the dipole per solid angle ink space:

FIG. 1. Isofrequency and wave contours. Left: the central region
of the isofrequency contour for normalized frequencyV=vd/2pc
=d/l=0.569 of an infinite square-lattice 2D photonic crystal made
out of dielectric rods placed in vacuum. Rods have the refractive
index 2.9 and radiusr =0.15d, whered is the period of the lattice
(see Sec. VI for details). The stationary pointsk1, k2, andk3, cor-
responding to the same observation directionx̂ are indicated. Right:
corresponding wave contour with folds. The shaded and black re-
gions show how two equal solid-angle sections in coordinate space
(right) map to widely varying solid-angle sections ink space(left).
The wave and group velocity vectors with numbers illustrate the
fold formation of the wave contour.
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dP

dVnk
=

p2v0
2

V

uAnksr 0d ·du2

uVnku
uknu2

cosw
. s36d

To derive the angular distribution of radiated power in coor-
dinate space, one should change the integration variables in
Eq. (35) from k space to coordinate space(Fig. 3).

The k-space distribution of the radiated power(36) is a
function of thek-space direction, given by the polar,unk, and
azimuthal,fnk, angles of the wave vectorkn. The direction
of energy propagation in a nonabsorbing periodic medium
coincides with the group velocity direction[50], whereas the
coordinate-space angular dependence of the radiated power
is given by the corresponding group velocity direction in
coordinate spacesu ,fd. Hereu andf are the polar and azi-
muthal angles of the group velocity in coordinate space. The
k space to coordinate space transformation may be expressed
formally as

cosu = fscosunk,fnkd, s37d

f = gscosunk,fnkd, s38d

where the functionsf andg are determined from the compo-
nents of the group velocity vectorVnk

n i x̂, wherex̂ is a unit
vector in the observation direction. The Jacobian of the trans-
formation, Eqs.(37) and (38),

Jnk =
] f

] cosunk

] g

] fnk
−

] f

] fnk

] g

] cosunk
, s39d

relates a small solid angle in coordinate space with the cor-
responding solid angle ink space via

dV = dscosuddf = Jnkdscosunkddfnk = JnkdVnk . s40d

According to the results presented in Sec. III, different wave
vectors can result in the group velocity with same direction
in coordinate space. That means that the equation

dVnk
n =

1

Jnk
n dV

should hold for each stationary wave vector, which satisfies
x̂ ·Vnk

n .0. Changing the integration variables in Eq.(35) one
should then sum individual contributions from all these wave
vectors:

P = o
n

o
n
E

0

4p

dVSp2v0
2

V

uAn
nksr 0d ·du2

Jnk
n uVnk

n u
ukn

nu2

cosw
D . s41d

The geometrical relationship between solid angles ink
space and coordinate space(Fig. 3) results in the following
formula for the Jacobian(39):

Jnk
n = ukn

nu2uKnk
n u/cosw.

Then, Eq.(41) can be transformed to the form

P =E
0

4p

dVSo
n

o
n

p2v0
2

V

uAnk
n sr 0d ·du2

uVnk
n uuKnk

n u D , s42d

whereVnk
n ==kvnk is the group velocity andKnk

n determines
the Gaussian curvature of the isofrequency surface at the
stationary pointkn=kn

n. Finally, the radiated power of the
dipole per solid angle in coordinate space is given by the
function enclosed in the brackets in Eq.(42):

dP

dV
= o

n
o

n

p2v0
2

V

uAnk
n sr 0d ·du2

uVnk
n uuKnk

n u
. s43d

Formula(43) provides a simple route to calculate an an-
gular distribution of radiated power of the point dipole(9)
inside a photonic crystal. It can be interpreted as a decay rate
at which the dipole transfers energy to the electromagnetic
waves with the group velocity in the observation direction.
Then, sdG /dVd=sdP/dVd /"v0 is related to the probability
of the radiative transition of an excited atom with emitting a
photon traveling in the given observation direction.

Basically, formulas(42) and (43) involve calculations of
the Bloch wave vectorskn

n, ending at the isofrequency sur-
facevnk =v0, the corresponding group velocity vectorsVnk

n ,
the Gaussian curvature of the isofrequency surfaceKnk

n , and
the local coupling strength of the dipole moment with a
Bloch eigenwavesn,kd, given by the factoruAnk

n sr 0d ·du. The
primary difficulty in obtaining the coordinate-space distribu-
tion of radiated powersdP/dVd, Eq. (43), is that the wave
vector, the group velocity, and the Gaussian curvature are all
functions of thek-space direction, whereas the angular de-
pendence of the radiative powersdP/dVd is given by the
corresponding group velocity directionsu ,fd. To calculate
the radiated powersdP/dVd, Eq. (43), one should take an
inverse of the mapping, Eqs.(37) and (38). This inverse is
not necessarily unique. In the case of multiple stationary
points(22) and(23), one directionsu ,fd results from several
different k-space directionssuk ,fkd (Fig. 1). This requires

FIG. 2. Diagram showing the relations betweenk space and
coordinate space quantities. Isofrequency contours for frequencies
vnk andvnk +dv are presented.

FIG. 3. Diagram to derive the relation between solid angles ink
space and coordinate space. The isofrequency contour for frequency
vnk is presented. The Jacobian of the transformation, Eqs.(37) and
(38), is given by the ratiodV /dVnk. By the definition of the solid
angle, the solid angle ink space isdVnk =d2k cosw / uknu2, while
the corresponding solid angle in coordinate space isdV=d2k uKnku.
That gives the JacobianJnk = uknu2uKnku /cosw. Here w is an angle
between the wave vector and the group velocity vector.d2k is the
surface element of the isofrequency surface.
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that the inversion of the mapping, Eqs.(37) and (38), must
be done point by point.

As a simple exercise, formula(43) is applied here to cal-
culate an angular distribution of power radiated by a dipole
in free space. The wave vector and the group velocity in free
space are parallel and their values are simply given byuk u
=v0/c and c, respectively. The Gaussian curvature of the
isofrequency surface is a square of the inverse wave vector
1/uk u2. And the appropriate normal modes are plane waves,

Anksr d =Î V

s2pd3eik·r ânk ,

where ânk is a polarization vector orthogonal to the wave
vectork. Then, the radiated power is given by Eq.(43),

S dP

dV
D

free
=

1

8p

v0
4

c3 udu2sin2 u, s44d

yielding the usual results for radiation pattern in free space
[45].

V. PHOTON FOCUSING

The factor uAnk
n sr 0d ·du2 in relation (43), giving the cou-

pling strength of dipole moment with the photonic crystal
eigenmode at the dipole position, can display a complex an-
gular behavior, which depends on the eigenmode structure
and dipole orientation with respect to the crystal lattice. To
study the net result of the influence of a photonic crystal on
the radiation pattern of the emitter, it is instructive to model
an isotropic light source producing a uniform distribution of
wave vectors. Moreover, an isotropic point source is usually
a good model for a common experimental situation of emit-
ters with random distribution of dipole moment(dye mol-
ecules[51–55], quantum dots[51,56], etc.). Then, the radi-
ated power(43) should be averaged over the dipole moment
orientation, which simply yields a factor ofudu2/3:

S dP

dV
D

i
= o

n
o

n

s2pcd3

Vv0
2

uAnk
n sr 0du2

uVnk
n uuKnk

n u
. s45d

Here the result was normalized to the radiated power in free
space. Now, the factoruAnk

n sr 0du2 gives the field strength at
the source position and has no angular dependence. So the
radiation pattern of a point isotropic emitter is defined by

S dP

dV
D

i
, o

n
o

n

uVnk
n u−1uKnk

n u−1. s46d

The radiated power(46) is proportional to the inverse
group velocityuVnk

n u−1 and to the inverse Gaussian curvature
uKnk

n u−1 of the isofrequency surface. A large enhancement of
the emission rate is expected when the group velocity is
small. This can be interpreted as a consequence of the long
interaction time of the emitter and the radiation field
[57–59]. In a similar fashion, a small Gaussian curvature
formally implies an enhancement of the radiated power
along a certain observation direction. While spontaneous
emission enhancement due to a small group velocity in-

volves a nonlinear interaction of the radiation and emitter,
the enhancement due to a small Gaussian curvature is a lin-
ear phenomenon related to the anisotropy of the photonic
crystal and is a result of the beam-steering effect. Being a
measure of the rate with which emitter transfers energy in
photons with a given group velocity, the radiated power(46)
will be enhanced if many photons with different wave vec-
tors reach the same detector. The enhancement of the radi-
ated power, which is due to the small Gaussian curvature, is
calledphoton focusing[38,39] and has a major influence on
the radiation pattern of the point source in a photonic crystal.

The physical picture ofphoton focusingcan be illustrated
in the following manner(Fig. 1). An isofrequency surface of
an isotropic and homogeneous medium is a sphere. There is
only one stationary point withx̂ ·Vnk

n .0 and thus only one
wave propagating in the given direction. Figure 1, left, is an
example of a part of the actual isofrequency contour of a 2D
photonic crystal made out of dielectric rods placed in
vacuum(see Sec. VI for further details). The anisotropy of
the crystal implies a complex nonspherical isofrequency sur-
face, which can have several stationary points with
x̂ ·Vnk

n .0 (Fig. 1, left). Several waves can propagate in a
given direction inside a photonic crystal. It is illustrative to
construct thewave surfacein coordinate space. To construct
the wave surface one should plot a ray in the observation
directionx̂ starting from the point source position and having
the length of the group velocityuVnk

n u. An example of the
wave contour is presented in Fig. 1, right. The existence of
multiple stationary points implies that the wave surface is a
complex multivalued surface parametrized by wave vector
kn. Figure 1 illustrates how this can result in a fold of the
wave surface.

In the vicinity of the parabolic point with zero Gaussian
curvature an isofrequency surface is flat. That implies that a
very large number of eigenwaves with wave vectors in the
vicinity of a parabolic point have nearly the same group
velocity, contributing to the energy flux in the direction par-
allel to that group velocity. In Fig. 1, it is illustrated by
mapping two equal solid-angle sections along different ob-
servation directions in coordinate space onto the correspond-
ing solid-angle sections ink space[60]. The black solid-
angle section in coordinate space maps onto a single smaller
solid-angle section ink space, implying a “defocusing” of
the energy flux. The shaded solid-angle section in coordinate
space, which crosses three different branches of the wave
contour, maps onto two different and larger solid-angle sec-
tions in k space, implying enhancement(“focusing”) of the
energy flux in this group velocity direction. This results in a
strongly varying angular distribution of the emission inten-
sity with sharp singularities(caustics).

VI. NUMERICAL EXAMPLE: 2D PHOTONIC CRYSTAL

In this section the theoretical approach developed in the
previous sections is applied to the numerical calculation of
the radiation pattern of a point source placed inside a 2D
photonic crystal. A point source is situated inside the crystal
and it produces an isotropic and uniform distribution of wave
vectorskn with the frequencyv0.
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An infinite 2D square lattice of dielectric rods in vacuum
(Fig. 4) is considered in the case of in-plane propagation.
Consequently, the problem of an electromagnetic wave inter-
action with a 2D photonic crystal is reduced to two indepen-
dent problems, which are called TE and TM, when the mag-
netic or electric field is parallel to the axis of the rods. In the
illustrative example presented in this section, all numerical
calculations have been performed for TM modes of the crys-
tal. The photonic band structure of the crystal made of the
rods with the refractive indexn=2.9 is presented in Fig. 4.
The band structure has been calculated using the plane wave
expansion method[61].

In Fig. 5 isofrequency contours of the crystal are pre-
sented for two frequencies belonging to the first photonic
band(Fig. 4). To plot an isofrequency contour, the photonic
band structure for all wave vectors within the irreducible BZ
was calculated and then the equationvskd=v0 was solved
for a given frequencyv0. Frequencies have been chosen be-
low sV=0.31d and abovesV=0.34d the low edge frequency
of the stop band in theGX direction of the crystal. The iso-

frequency contours below and above the stop band edge fre-
quency show an important difference. As the frequency stays
below the stop band, the isofrequency contour isclosedand
almost circular(Fig. 5). The corresponding wave contour
(see Sec. V for definition) is presented in Fig. 6. To calculate
the group velocity, the plane-wave expansion method[61]
and the Hellmann-Feynman[14] theorem were used. The
group velocityuVnk

n u and the Gaussian curvatureuKnk
n u of the

isofrequency contours are relatively slow functions of the
wave vector. The Gaussian curvature does not vanish for any
wave vector. This implies a small anisotropy in the energy
flux inside the crystal.

To find how a radiated power varies in coordinate space,
one should calculate the group velocity and the Gaussian
curvature on the isofrequency contourvskd=v0 as functions
of the angle in coordinate space. As the wave contour is a
single-valued function, the inverse of the mapping, Eqs.(37)
and(38), from k space to coordinate space is one to one and
can be easily done. In Fig. 7 a polar plot of the radiated
power is presented, which shows a small amount of aniso-

FIG. 4. Photonic band structure of TM modes for the square-
lattice photonic crystal with refractive index of the rodsn=2.9,
lattice constantd, and radius of the rods 0.15d. The frequency is
normalized toV=vd/2pc=d/l. Here c is the speed of light in
vacuum. The insets show the first Brillouin zone of the crystal with
the irreducible zone shaded light gray(left) and a part of the lattice
(right).

FIG. 5. Isofrequency contours of the square-lattice photonic
crystal for the normalized frequenciesV=0.31 (dashed line) and
V=0.34 (solid line). The parabolic points are marked by the black
dots. The first Brillouin zone of the lattice is plotted in order to
show the spatial relation between zone boundary and isofrequency
contours.

FIG. 6. Wave contour corresponding to the normalized fre-
quencyV=0.31.The group velocity is plotted in units of the speed
of light in vacuum. High-symmetry directions of the square lattice
are specified.

FIG. 7. Angular distribution of radiated power corresponding to
the normalized frequencyV=0.31. High-symmetry directions of
the square lattice are specified.
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tropy. The angular distribution of the radiated power pos-
sesses fourfold rotational symmetry of the crystal.

With an increase of the frequency up to the stop band, the
topology of the isofrequency contour abruptly changes. The
stop band developes in theGX direction and the isofrequency
contour becomesopen (Fig. 5). This topology changes the
result in the complex contour with alternating regions of dif-
ferent Gaussian curvature signs. Parabolic points, where the
Gaussian curvature vanishes, are marked by black dots in
Fig. 5. As has been discussed in Sec. V, a vanishing curva-
ture results in the folds of the wave contour. The wave con-
tour corresponding to the isofrequencyV=0.34 is presented
in Fig. 8. A pair of the parabolic points in the first quarter of
the Brillouin zone results in a cuspidal structure of the wave
contours in the first quarter of coordinate space. This dra-
matically increases anisotropy of the energy flux.

The folds in the wave contours yield that the inverse of
the mapping, Eqs.(37) and(38), from k space to coordinate
space is not one to one anymore. To apply the formula(46)

to calculate the angular distribution of the radiated power in
such a case, one should proceed as follows. At first, the
Gaussian curvature as a function of the wave vector should
be calculated. Then, wave vectors and group velocities cor-
responding to the parabolic points on the isofrequency sur-
face should be found. An inversion of the mapping, Eqs.(37)
and (38), should be calculated separately for each of the
branches of the wave contour. The total radiated power is a
sum of the different contributions from these branches. In
Fig. 9 the polar plot of the radiated power(46) corresponding
to the normalized frequencyV=0.34 is presented. The en-
ergy flux is strongly anisotropic for this frequency, showing a

FIG. 8. Wave contour corresponding to the normalized fre-
quencyV=0.34. The group velocity is plotted in units of the speed
of light in vacuum. The directions corresponding to the folds of the
wave contour are shown.

FIG. 9. Angular distribution of the radiated power correspond-
ing to the normalized frequencyV=0.34. The directions of infinite
radiated power(caustic) coincide with the directions of the folds of
the wave contour(Fig. 8).

FIG. 10. (a) FDTD calculation. Map of the modulus of the
Poynting vector field for a 50350 rods photonic crystal excited by
a point isotropic source with the normalized frequencyV=0.34.
The location of the crystal in the simulation domain is shown to-
gether with asymptotic directions of photon focusing caustics.(b)
Isofrequency contours of the square lattice photonic crystal(solid
line) and air(dashed line) for normalized frequencyV=0.34. The
dash-dotted line is a construction line. The wave vector correspond-
ing to the parabolic point(black dot), k fold, and the wave vector in
air, obtained from the momentum conservation law at the crystal–
air interface,kair, are shown.

RADIATION PATTERN OF A CLASSICAL DIPOLE IN… PHYSICAL REVIEW E 70, 056611(2004)

056611-9



relatively small intensity in the directions of the stop band
and infinite intensity(caustics) in the directions of the folds.

To substantiate this behavior, finite-difference time do-
main (FDTD) calculations were done[62,63]. The simulated
structure was a 50350 lattice of dielectric rods in vacuum
[Fig. 10(a)]. The top-left corner of the lattice was removed,
allowing the radiation to leave the structure and to refract at
the crystal–air interface. The simulation domain was dis-
cretized into squares with a sideD=d/16. The total simula-
tion region was 8003800 cells plus a 16-cell-wide perfectly
matched layer(PML) [64]. The point isotropic light source
was modeled by a current density source[62,63] with a ho-
mogeneous spacial dependence and sinusoidal temporal de-
pendence of the signal. FDTD calculations were performed
using the code described in Ref.[65].

In Fig. 10(a) a map of the modulus of the Poynting vector
field is shown. The point source is placed in the middle of
the crystal. The field map is shown for one instant time step.
The snapshots were captured after 4096 time steps, where the
time step was 0.99 of the Courant value. The structure of the
crystal is superimposed on the field map. From Fig. 10(a)
one can see that the emitted light is focused in the directions
coinciding with the predicted directions of the folds(black
lines inside the crystal).

The radiation experiences refraction when it approaches
the photonic crystal–air interface[Fig. 10(a)]. To predict the
focusing direction outside the crystal the wave vector dia-
gram can be analyzed[Fig. 10(b)]. In Fig. 10(b), isofre-
quency contours of the crystal(solid line) and air (dashed
line) for normalized frequencyV=0.34 together with the
construction line(dash-dotted line) are shown. The construc-
tion line is a line, which is perpendicular to the crystal–air
interface. Applying the momentum conservation law to the
tangential component of the wave vector at the parabolic
point, the wave vector of refracted wave can be obtained.
One can see from Fig. 10(b) that such a simple analysis gives
a reasonable agreement with the rigorous FDTD calcula-
tions.

In Figs. 11–13, a more complicated example of the aniso-

tropy of a photonic crystal is presented. Isofrequency con-
tours for three frequencies belonging to the second photonic
band of the crystal are plotted in Fig. 11. While isofrequency
contours for the normalized frequenciesV=0.55 and V
=0.58 have nonvanishing Gaussian curvature for all wave
vectors leading to only a limited anisotropy of the energy
flux, the isofrequency contour for the normalized frequencies
V=0.565 displays several parabolic points. Moreover, the
isofrequency contour consists of two branches with slightly
different shapes(solid and dashed lines in Fig. 11). Two
branches yield two wave contours with cuspidal folds in co-
ordinate space(Fig. 12). Applying the formula(46) to the
radiated power calculation, one should sum over contribu-
tions coming from all branches of the wave contours in co-
ordinate space. An angular distribution of radiated power for
the normalized frequenciesV=0.565 is presented in Fig. 13.
Within the first quarter of coordinate space, four caustics
with infinite radiated power present in the energy flux corre-

FIG. 11. Isofrequency contours of the square-lattice photonic
crystal for the normalized frequenciesV=0.55 (dotted line), V
=0.565 (solid and dashed lines) and V=0.58 (dash-dotted line).
Two branches of the isofrequency contour ofV=0.565 are plotted
as solid and dashed lines. The parabolic points are marked by the
black dots. The first Brillouin zone of the lattice is plotted in order
to show the spatial relation between the zone boundary and isofre-
quency contours.

FIG. 12. Wave contours corresponding to the normalized fre-
quencyV=0.565. Solid(dashed) wave contour corresponds to solid
(dashed) isofrequency contour in Fig. 11. The group velocity is
plotted in the units of the speed of light in vacuum. The directions
corresponding to the folds of the wave contour are shown.

FIG. 13. Angular distribution of radiated power corresponding
to the normalized frequencyV=0.565. The directions of infinite
radiative power(caustic) coincide with the directions of the folds of
the wave contour.
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sponded to four parabolic points on two branches of the iso-
frequency contours.

VII. SUMMARY

In this paper, by analyzing a dipole field in the radiation
zone it was shown that the principal contribution to the far
field of the dipole radiating in a photonic crystal comes from
the regions of the isofrequency surface in the wave vector
space at which the eigenwave group velocity is parallel to
observation directionx̂. It was also shown that the anisotropy
of a photonic crystal reveals itself in the strongly nonspheri-
cal wave front, leading to modifications of both the far-field
radiation pattern and spontaneous emission rate. By system-
atic analysis of the Maxwell equations a simple formula to
calculate an angular distribution of the radiated power due to
a point dipole placed in a photonic crystal was derived. The
formula only involves calculations of the wave vectors, the
group velocity, the coupling strength of the dipole moment

with the field, and the Gaussian curvature on the isofre-
quency surface corresponding to the frequency of the oscil-
lating dipole. That can be done by the simple plane-wave
expansion method and is not computationally demanding. A
numerical example was given for a square-lattice 2D photo-
nic crystal. It was shown by applying the developed formal-
ism and substantiated by FDTD calculations that if a dipole
frequency is within a partial photonic band gap, the far-field
radiation pattern is strongly modified with respect to the di-
pole radiation pattern in vacuum, demonstrating suppression
in the directions of the spatial stop band and enhancement in
the direction of the group velocity, which is stationary with
respect to a small variation of the wave vector.
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